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Chebyschev approximations are employed to solve the one-dimensional, time-de- 
pendent Fokker-Planck (forward Kolmogrov) equation in the presence of two barriers a 
finite “distance” apart. Solutions are presented for the fundamental intervals (-1, + 1) 
and (0, +l). In order to speed up the calculations, sparse matrix routines are utilized. 
The first passage time probability density function is also evaluated. Illustrative numerical 
results are presented for the Wiener process with drift, and the Omstein-Ublenbeck process 
for a variety of combinations of boundary conditions. 

1. INTRODUCTION 

The Fokker-Planck (forward Kolmogorov) equation arises in a wide variety of 
problems of physical and biological interest. Many of these problems involve the 
Fokker-Planck equation in the presence of two barriers (boundaries) on a finite 
section of the line rather than on the inI?.nite line for which methods have been devised 
(see [l, 2, 151). 

When the boundaries are located a finite “distance” apart, then we have to contend 
with two radically different situations. In the fist situation (and the one we cover 
in the present paper), the inimitesimal transition moments do not vanish identically 
at both boundaries. This is termed the regular case and essentially amounts to solving 
the Fokker-Planck equation subject to boundary conditions at the barriers which are 
generally absorbing or reflecting. When both infinitesimal transition moments vanish 
identically at both boundaries, this is termed the singular case and has been thoroughly 
analyzed by Feller [4]. Convenient pedagogic versions are available in Kielson [7] 
and Goel and Richter-Dyn [6]. The singular case is constantly encountered in 
population genetics (i.e., [3,8]). 

The purpose of the present paper is to find solutions to the regular case employing 
the powerful properties of Chebyshev polynomials coupled with sparse matrix 
routines. We assume that the reader is familiar with the general properties of these 
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polynomials; especially useful references are Fox and Parker [5], Snyder [14], and 
Rivlin [12]. We defer any discussion of these orthogonal polynomials until Section 2 
and proceed to the formulation of the problem. 

The Fokker-Planck (forward Kolmogorov) equation describing the time evolution 
of the transition probability f(x, t / x0 , 0) is 

where V(x), M(x) are the infinitesimal transition moments 

(1.3) 

Both M and V are assumed to be such that they do not vanish simultaneously at both 
boundaries. 

Equation (1.1) is to be solved subject to the initial condition 

1j_::f(x, t I x0 , 0) = 6(x - x0> U-4) 

as well as specified boundary conditions. 
The boundary conditions are 

f(& t I x0 3 0) = 0, for absorbing barrier, (1.5) 

g(a/ax)(vf) - My- = 0, for reflecting barrier. (1.6) 

These boundary conditions will be taken at either (1) x = fa or (2) x = 0, a; here a 
is taken to be finite. We can always scale the variables so that the intervals reduce to (1) 
x = & 1 or (2) x = 0, 1. We will treat both cases with special emphasis on case (2). 

The analysis will be carried out for general M(x) and V(x), however, illustrative 
numerical calculations are performed for two important cases: the Wiener process 
with drift, and the Ornstein-Uhlenbeck process. 

A quantity of considerable interest when one or both of the boundaries is absorbing 
is the probability density function of the first passage time g(t, x0) given by 

&,x0>= -~Jf(x,tlx,,0)dx, (1.7) 

where the integration is either (-a, a) or (0, a). One of the chief benefits of the 
Chebyshev polynomial approach is the relative ease in evaluating g(t, x0). See 
Section 10 for some numerical results. 
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2. CHEBYSCHEV APPROXIMATION FOR TRANSITION PDF 

For typographic convenience set 

f(x, t I x0 3 0) = f(x, t). w 

We seek a solution of Eq. (1 .l) in the form 

where T,(x) is the Chebyschev polynomial of degree n 

T,(x) = cos(n arccos x), /XI G 1. 
(2.3) 

The time-dependent function A,(t) is taken to be 

(2.4) 

where the an,,. are to be determined. 
The behavior of the (as yet unknown) eigenvahtes A,. depends on the boundary 

conditions imposed. If both boundaries are taken to be rejiecting, then the A,. are 
nonpositive with one eigenvalue equal to zero. This guarantees a steady-state solution 
f(x, cc 1 x0, 0) independent of the initial conditions such that 

s h t I x,,O)dx = 1, O<t<CO. (2.5) 
0 

However, when one (or both) of the boundaries is absorbing, thenf(x, t 1 x0, 0) is no 
longer a probability density function. Now f(x, t 1 x0 , 0) dx is to be interpreted as the 
probability that the random process X(t), having started at X(0) = x0 , reaches a value 
between x and x + dx at t. Consequently, 

@y-(x, tlxo,O) = 0, (2.6) 

since absorption is bound to take place. This implies that all the A, are nonpositive. 
The drift coefficients M and V are also to be expanded into a Chebyschev series 

(2.7) 

w4 = 1 wz~&4. (2.8) 
n 
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When M and V are polynomials in X, a very common occurrence, then these series 
are finite. However, if M or V are trigonometric functions, such as occur in phase- 
locked loops, Josepheson junctions, etc., then these series are i&rite series. 

Our problem naturally divides into two parts: the determination of the eigenvalues A+. 
and the determination of the unVr coefficients for the specified boundary conditions. 
These topics are the subjects of the next sections. 

The Chebyschev expansion, Eq. (2.2), possesses the important property that it 
converges very rapidly (in the following sense). Suppose that f(x, t) is in6nitely 
differentiable for t > 0 (this is a reasonable statement since the Fokker-Planck 
equation, being a parabolic differential equation, will smooth out discontinuities); 
then the errors decrease more rapidly than any power of N-l as N approaches infinity. 
A formal proof can be found in Orszag [ll]. Thus the Chebyschev approach is 
efficient, in addition to having other useful properties. 

3. SOLUTION FOR (-1, +1) 

We now express Eq. (1.1) in terms of Chebyschev polynomials and thereby obtain 
coupled differential equations connecting the eigenvalues X, and the u,,r coefficients. 
The analysis proceeds in three steps: 

Step 1. Expansion of ( Vf)o;t: . Let 

By Eq. (A.8), we have 

IQ’ = g f V,9-m,A,m,(t). 
m=-a 

Now let 

(3.1) 

(3.2) 

(3.3) 

By Eq. (A.5) we have 

P’ = .s2 p(p2 - 2) Ra”’ n 

pntmod 2) 

(3.4) 

m=-c-0 P-s+2 
s=n(mod 2) 
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Step 2. Expansion of (Mf)* . Let 

By Eq. (A.8), we have 

sy = + f @,p-m,A,m~(t). 
?n=-cc 

Now let the derivative of Mfbe 

By Eq. (A.l), we obtain 

S(l) = 2 A 
p=n+1 

1 p+q =l(mod 2) 

= f &do ’ P~lwn * 
m=-m p=n+1 

j p+nl -l(mod 2) 

429 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Step 3. Eigenvalue differential equation. Let 

am 4 = & pg+2 P(P2 - n”) ~I,-ml - PJL-ml * (3.9) 
?J=n+1 

e=n(mod 2) 1 ~+nj =l(mod 2) 

We then have 

(3.10) 

Upon expanding the right-hand side of this equation, we can show that 

This Snite system partially determines the eigenvalues, but of course only a finite 
section can be employed in actual calculations. If the upper limit is taken as N, then 
Eq. (3.11) furnishes N + 1 equations. 
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Equation (3.11) by itself is useless and we need to. impose the boundary conditions 
and the initial conditions. The initial conditions are easily handled, so we have1 

.m, 0) = 6(x - x0) = f 4m T,(x), 
n=o 

(3.12) 

where 

where c, is defined as 

c, = 0, n < 0, 

Z 2, n = 0, 
= 1, n > 0. 

Consequently, 

f h = [2/(%-CJ](l - x02)-1/2 T,(x,) = &‘(x,) 
r-0 

for n = 0, I,... . 
For an absorbing boundary at x = 1, we have 

since T,(l) = 1; this translates into the requirement 

5 0. a .y = 
n=o 

The corresponding expression for an absorbing boundary at x = - 1 is 

go C-1)” an.? = 0. 
Note that T,(- 1) = (- 1)“. 

The formulas for a reflecting barrier are more complicated. Set 

m 

C(m, n) = 4 C PK-mi - mm-nl . 
Lll=7&+1 

lp+nl =l(mod 2) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

1 We approximated the Dirac delta function in Eq. (3.12) by a Gaussian PDF having mean x,, and 
very small variance 9. 
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At x = 1, we can show that 

while at x = -1, 

o=f 
9n=o 

am,r z. (--lIti [Ctm, 4 + Ct-m, 41. 

(3.20) 

(3.21) 

4. SOLUTION FOR (0, +1) 

This analysis is similar to that of the previous sections, except that we employ the 
shifted Chebyschev polynomials Tn*(x), 

T,*(x) = T,(2x - l), O<x<l. (4.1) 

Here we have 

(4.2) 

where 

A,*(t) = f, a&e”rt. 
r=o 

(4.3) 

By methods similar to those just employed, we can prove that the eigenvalue 
differential equation corresponding to Eq. (3.11) is 

h4F,,, = jfo ':~[~*tm, n) + K*(-m, n)l, (4.4) 

where 

K*(m,n)= 'f P(P2 - qL-ml - 2 PJLnbl * (4.5) 
p=n+z p-n+1 

p=n(mod 2) jp+nl =l(mod 2) 

The formula corresp’onding to Eq. (3.15) for the initial condition is 

(4.6) 

The boundary conditions are handled in much the same manner. 
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The final results for an absorbing boundary at x = 0 and x = 1 are 

z. t-1)” ait,, = 0, 
t* 0 hr = . 
n=o 

(4.7) 

(4.8) 

The corresponding expressions for a rejecting boundary at x = 0 and x = 1 are 

if m=o 
d+L z. C-1)” [C*(w 4 + C*(--m, 41 = 0, (4.9) 

i a&, $ [C*h 4 + C*(--m, 41 = 0, (4.10) 
WZ=O 

where 

C*(m, n) = P6 D--ml - &v,m-n, . 
ll=n+1 

Ig+nf =llmod 2) 

(4.11) 

5. DETERMINATION OF THE EIGENVALUES 

In order to determine the eigenvalues, we employ Eq. (3.11) or Eq. (4.4), depending 
on the fundamental interval in question. Either equation furnishes a system of 
N + 1 equations for the determination of the eigenvalues. In addition, there are two 
equations for the boundary conditions: 

where 

f A,*(t) bf = 5 A,*(t) b$’ = 0, 
?7L=O n&=0 

(5.1) 

b(l) = 1 m (the absorbing boundary), 

= 2 [C*(m, n) + C*(--m, n)] 
(5.2) 

(the reflecting boundary), 
m=o 

atx = 1, and 

bt2) = (-1)” nz (the absorbing boundary), 

= mgo (-1)” [C*(m, n) + C*(--m, n)] 
(5.3) 

(the reflecting boundary), 

at x = 0. Henceforth we confine ourselves to (0, 1); the (--I, 1) interval can be 
treated similarly. 
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The system of equations is overdetermined by 2 and admits only the trivial solution. 
Therefore we must resort to the tau method of Lanczos [9] and add two tau terms 
in the two highest-order equations. This corresponds to the elimination of the two 
highest-order terms of the expansion, so we are left with N + 1 equations. The 
eigenvalues can now be determined by the standard QR algorithm in time O(N3), 
as discussed in [16]. 

6. DETERMINATION OF a,,? COEFFICIENTS 

This section is devoted to methods for determining the a,,, coefficients. We again 
connne the analysis to (0, 1). As in the previous section, we drop the two highest-order 
terms of the Chebyschev expansion, Eq. (4.4), so as to satisfy the boundary conditions. 
Equations (5.1) translate into 

N 

(6-l) 

Thus we have (N + 1) * (R + 1) equations; however, we must also add the equations 
for the initial conditions 

f 4,, = &&(X0), n = 0, l)...) N, (4.6) 
l-0 

which means we really have (N + 1) . (I? + 2) equations. Since we only need 
(N + 1) * (R + 1) coefficients, the system is overdetermined by N + 1 equations. 
Again we resort to the tau method of Lanczos for r = 0, l,..., R. Equation (4.4) now 
becomes 

z. ‘k~[~*(m~ n) -t- K*(-m, n)] - &a,*,, = pn,T, 

where n = 0, l,..., N - 2, and pm,r is defined to be 

Pn,r = 77 9 for n = N - 2 and r = 0, l,..., R - 1, 
zz rn, for n = R - 2,..., N - 2 and r = R, (6.3) 
xz 0, elsewhere. 

Note that the (N + 1) tau terms are added in such a manner so as to preserve the 
boundary conditions. Now we have (N + 1) * (R + 1) equations and the same 
number of unknowns. A naive solution requires O(R3N3) time and O(RzN2) space. 

Note that the resultant system of linear equations has a very sparse structure 
(see Fig. 1). We now present a method which efficiently exploits the sparsity structure 
of the system and requires only O(RN3) time and O(N2) space. See [13, 171 for details 
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+-------(Ntl)(R+2)------) 

"0 00 0 

"I 0 alo 

\ 
\ 

I I 

\ I 
\ I 

\ 

'\ 

I I 
I I 

0 “R-l 4-l 0 

“R 43 0 
I I ----- 1 I oj3 

FIG. 1. Diagram of the sparsity structure of the system of equations where f  is an 
(N + l)(N + 1) unit matrix and .& is an (N + l)(N + 1) matrix: 

Lqm, n) = 1, n=N-2, O<r<R, 

= 1, Y = R, R--2<n<N-2, 

= 0, elsewhere. 

c’, is an (N + l)(N + 1) matrix: 

Wm, 4 = K*(m, n) + K*(-m, 41, m # n = O,..., N - 2 

= [K*(m, n) + K*(-m, n)] - Ar m = n = O,..., N - 2 

= 1)1, p n=N-1, 

= m, p n = N. 

fi is a column matrix composed of PO ,..., &. 

of the analysis. Our strategy is not to solve for the u,,~ unknowns directly, but instead 
to first determine the tau terms and then back-solve for the ulz,? . This process requires 
three steps: 

1. Determination of the a* terms in relation to the r terms. For each r = 0, l,..., R 
we must determine the coefficients 012~ a** 01~~~ , where 

* 
%r = 

* I r = 0, I,..., R - 1, 
%,ri-r 3 n = 0, l,..., N; 

= r$R a,*.,~, , II = 0, l,..., N. 

(6.4) 

This step requires O(RN3) time. Since each LX& a** az,r are determined separately 
for each r, only O(P) space is required for this step. 
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2. Solving for the r terms. Now substituting Eq. (6.4) into the equations for the 
initial conditions, we have 

2 a,*,,~, = /3,(x,), n = 0, I,..., N. (6.5) 

The T terms can be determined in O(N3) time. 

3. Backsolve for the a$ coeficients. Now that the 7 coefficients have been 
determined, the a:,, coefficients can be determined in O(RN3 time by the relations 
computed in Step 1. This three step process requires O(RNs) time and O(N2) space. 

7. FIRST PASSAGE TIME PDF 

The first passage time PDF, g(t, x0), given by Eq. (1.7), is easily evaluated. We 
confine our attention to the evaluation of g(t, x0) for the interval (0, 1). 

Upon substituting Eq. (4.2) into Eq. (1.7), we obtain 

d4 xo) = - !. A;*(t) h, , 

where 
R 

A’,* = c a,*9,X,e”rt 
T==O 

(7.1) 

(7.2) 

and 

h, = j”’ T,*(x) dx 
0 

I=2 1, n = 0, 
(7.3) 

= 0, n = 1, 

1 T,*+1(4 
[ 

T:-,(x) 
=4 n+1 - n-l ’ 1 n > 1. 

The simple expression for g(t, x0) given in Eq. (7.1) permits its calculation as part 
of the evaluation of f(x, t 1 x0 , 0) or independently. 

8. NUMERICAL RESULTS: WIENER PROCESS 

For the Wiener process with drift, the derivate moments are 

V = 20, M = 4/3D, (8.1) 

where D and /? are numerical constants (see [2]). We will convert to dimensionless 
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variables by setting x, = x/a, t, = Dt/a”, and /$ = a/3. The Fokker-Planck equation 
becomes 

i-Y -= -4/3,$L+?L, 
at, 0 <Xl < 1. 

1 1 

The corresponding equations for the boundary conditions are 

- - 4/$j- = 0, 
8x1 

x1 = 0 or I (8.3) 

(8.2) 

at a reflecting barrier andf = 0 at x1 = 0 or 1 at an absorbing barrier. 
There are four cases to consider: 

1. RR: reflecting at x = 0, reflecting at x = 1; 

2. AA: absorbing at x = 0, absorbing at x = 1; 

3. AR: absorbing at x = 0, reflecting at x = 1; 

4. RA: reflecting at x = 0, absorbing at x = 1. 

In case RR, the transient solutionf(x, , tl) approaches the steady-state solution 

.f(xl 3 m) = 4/$@4Bl - I)-’ p121, (8.4) 

which arises from the fact that one of the eigenvalues of Eq. (8.2) is zero. Here 
f(x 1 , tl) is a true probability density function. The remaining three cases all have 
absorbing boundaries and any process confined between them will ultimately be 
absorbed, i.e., 

f(Xl> co) = 0. (8.5) 

For these cases, f(xr , t& is to be understood to mean the probability density that the 
random process X(t) = x and that the process has not yet reached the boundaries 
in (0, rd. 

We have made no serious attempt to develop a detailed catalog of numerical 
results and we confine our presentation to a few typical results. In the calculations 
which follow, and for those of the next section also, we employed 20 eigenvalues and 
27 coefficients and took the Dirac delta function to be centered at x0 = 0.5. The drift 
coefficient was fixed at /I1 = 0.125. 

Numerical results for the RR case are summarized in Fig. 2. Note how rapidly 
the transient solution approaches the steady-state solution. The numerical results 
for the AA case are shown in Fig. 3; the curves are not symmetric about x0 = 0.5 
since /I1 > 0. Finally, the curves for the AR case are displayed in Fig. 4; the corre- 
sponding curves for the RA case are essentially mirror images of the AR case (at least 
for jll = 0.125). There is a fairly slow relaxation of the initial Dirac delta function 
to the limiting value of zero. We also ran some calculations for an off-center Dirac 
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58112314 -7 



438 REIF AND BARAKAT 

A 
/- \ 

2.4 - : \ 

FKL 4. j-61, G) for Wiener process with absorbing boundary at x1 = 0 and reflecting boundmy 
at X1 = 1 6% = 0.125, x0 = 0.50): (A) II = 0.01; (B) tI = 0.02; (C) tI = 0.04; (D) tl = 0.08; 
(El h = 0.16; 0 tl = 0.32; (G) tl = 0.64; (H) tl = 1.28. 

delta function (i.e., x,, # 0.5). It appears that the approach to the equilibrium 
situation is strongly influenced by the degree to which x0 differs from 0.5; the “decay” 
times are much longer. 

9. NUMERICAL RESULTS, ORNSTEIN-UHLENBECK PROCESS 

For the Ornstein-Uhlenbeck process, the derivate moments are 

V = 20, M = -La, 01 > 0. (9.1) 

The corresponding Fokker-Planck equation can be cast into dimensionless form by 
setting xl = x/a, tl = Dt/a”, and 01~ = a201/D; thus 

af a2f 
at, - axI2 

ahf) --+al----- 
axI 

(0 < x1 < 1). 

The boundary condition for a reflecting barrier is 

g + WJ = 0, x1 = 0 or 1. 
1 
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FIG. 5. f(x 1, f,) for OU process with reflecting boundaries at x1 = 0, 1 (0~~ = 1, x0 = 0.50): 
(A) t, = 0.01; (B) tl = 0.02; (C).Q = 0.04; (D) tI = 0.08; (E) tI = co. 
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FIG. 6. f(x, , tI) for OU process with absorbing boundaries at x1 = 0, 1 (aI = 1, x,, = 0.50): 
(A) t, = 0.01; (B) I, = 0.02; (C) rl = 0.04; (D) f, = 0.8; (E) tI = 0.16; (F) tI = 0.32. 
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2.4 - 

2.0 - 

Fax 7. f(%, TV) for OU Press with absorbing boundary at x1 = 0 and reflecting bomb 
at x1 = 1 @I = 1, -G = 0.50): (A) t, = 0.01; (B) I, = 0.02; (C) I, = 0.04; (D) tI = 0.08; 
(E) 4 = 0.16; (F) tI = 0.32; (G) r, = 0.64. 

Fm. 8. &x9 ~0) for Wiener process @, = 0.125, x0 = 0.50) for various boundary conditions: 
---AA, ---RA,- AR. 
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The corresponding numerical calculations are shown in Figs. 5-7 and do not 
require any detailed comment. Note that ar, = 1 for these calculations. 

During the revision of this manuscript, the important paper of Lindenberg, Schuler, 
Freeman, and Lie [lOI on the Ornstein-Uhlenbeck process has appeared. 

FNX 9. g(tl, x,,) for Wiener process for absorbing-reflecting boundaries as a function of 
&(x0 = 0.50): (A) fll = 0.125; (B) p1 = 0.50; (C) fll = 2.0. 

10. FIRST PASSAGE TIME PDF’s 

The fxst passage time PDF g(tl , x0), Eq. (7.1), was also evaluated for the Wiener 
and Ornstein-Uhlenbeck processes. As before, 20 eigenvalues and 27 Chebyschev 
coefficients were employed. 

TABLE I 

First Six Eigenvalues, Wiener Process with Drift With fll = 0.125, for Various Boundary Conditions 
at x = 0, 1 

AA AR RA RR 

---I\0 0.99321qol) 

-4 0.395409(02) 

---x2 0.888889(02) 

---A, 0.157976(03) 

--x, 0.246803(03) 

-45 0.355368(03) 

0.200364(01) 

0.217667(02) 

0.612467(02) 

0.120465(03) 

0.199422(03) 

0.298118(03) 

0.300547(01) 

0.227659(02) 

0.622464(02) 

0.121465(03) 

0.200422(03) 

0.299118(03) 

0 

0.99321qol) 

0.395409(02) 

0.888889(02) 

0.157976(03) 

0.246803(03) 
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The calculations for the Wiener process are summarized in Figs. 8 and 9. In Fig. 8, 
we show g(tl , x,,) for fixed /?I = 0.125, x0 = 0.5 for various combinations of boundary 
conditions. As expected, the absorbing-absorbing case tends to zero, as tI increases 
much more rapidly than the other cases. The rate at which g(tl , x0) tends to zero is 
governed by the first eigenvalue. Examination of Table I reveals that the absorbing- 
reflecting case has the smallest eigenvalue and hence the slowest rate of decay. Figure 9 
illustrates the behavior of g(t, , x0) for the absorbing-reflecting case as a function of /I1 . 
The larger the drift coefficient PI , the slower the decay to zero as a function of tI . 
This accords with the numerical calculations. 

The corresponding calculations for the Ornstein-Uhlenbeck process are given in 

‘I 

FIG. 10. g& , x0) for Omstein-Uhlenbeck process ( aI = 1.0, x0 = 0.50) for various boundary 
conditions: ---AA, - . - RA, -- AR. 

FIG. 11. g(t, , x,,) for Ornstein-Uhlenbeck process for absorbing-reflecting boundaries as a 
function of mI(xO = 0.50): (A) q = 0.125; (B) 0~~ = 1.0. 
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Figs. 10 and 11. Note that the reflecting-absorbing case now has the slowest rate of 
decay (see Table II). The absorbing-reflecting case, Fig. 11, is quite interesting in that 
it shows how insensitive is g(t, , x,,) to the coefficient 01~ . 

TABLE II 

First Six Eigenvalues, Ornstein-Uhlenbeck process with q = 1, for Various Boundary Conditions 
at x = 0, 1 

AA AR RA RR 

--ho 0.944020(01) 0.3OOOOO(01) 0.2OOOOO(01) 0 

-4 0.390586(02) 0.227843(02) 0.217843(02) 0.104402(02) 

--h, 0.884084(02) 0.622664(02) 0.612664(02) 0.400586(02) 

-4 0.157496(03) 0.121485(03) 0.120485(03) 0.894084(02) 

--h, 0.246323(03) 0.200442(03) 0.199442(03) 0.158496(03) 

--h, 0.354889(03) 0.299139(03) 0.298139(03) 0.247323(03) 

There is no difficulty in also obtaining such items as the mean of the first passage 
time, etc. Obviously such functions must be evaluated over a variety of parameter 
values, times, boundary conditions, etc., if they are to be useful. However, such 
detailed calculations are outside the spirit of the present paper and we hope that some 
interested reader can undertake this task. 

APPENDIX 

In this Appendix we list some important formulas which are crucial for the analysis 
outlined in Sections 3 and 4 (see [5] for details). 

It is convenient to define a function 

c, = 0, n < 0, 

= 2, n = 0, (A4 
= 1, n > 0. 

Let the function F(X) be expanded in a Chebyschev series in the interval (- 1, 1) 

F(x) = f &J,(x). 64.2) 
?Z=O 

Provided the jth derivative of F(X) exists, we can also write 

d:‘Fldx’ = f afT,(x). 
T&=0 

(A.3) 
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The relation between the coefficients of these two series is discussed in Fox and Parker; 
in the notation of Orszag [l 11, the pertinent relations are 

c pa, , n > 0, 
p=n+1 

(n+n) =l(mod 2) 

64) 

(2) 1 a, =- c, .4,, P(P~ - n”) a, 9 n b 0, (A.3 
p=n(mod 2) 

where a = b (mod 2) means that (a - b) is divisible by 2. 
Now consider the product of two functions G(x), F(x), where F(x) has the expansion, 

Eq. (A.2), and G(x) has the expansion 

G(x) = f bJ-,(x). 64.6) 
It=0 

We have 

G(x),%4 = f e, T,(x). (A.71 
?I=0 

It is possible to prove that 

(‘4.8) 

where a, = clnlalnl , 6, = clniblnl . 
We will also need the corresponding formulas for the interval (0, 1). In order to do 

this, we simply replace T,(x) by the shifted Chebyschev polynomial T,,*(x). The 
companion results to Eqs. (A.4), (AS), and (A.8) are 

(1) 4 a, = c pa, p (A.9) 
p=n+1 

ip+nl =l(mod 2) 

a$ = 4 C P(P~ - n2) a, y (A.lO) 
p=nt2 

p-ntmod 2) 
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